
Coding Rules for
OpENer — Open Source EtherNet/IPTM Adapter Stack

Version 1.0

Alois Zoitl∗

2009-10-29

Contents

1 Comments

A sufficient amount of comments has to be written. There are never too many comments, whereas
invalid comments are worse than none — thus invalid comments have to be removed from the
source code. Comments have to be written in English.

Comments for function, structure, . . . definitions have to follow the conventions of
Doxygen to allow the automated generation of documentation for the sourcecode.

Comments have to be meaningful, to describe to program and to be up to date.

1.1 Fileheaders

Every source-file must contain a fileheader as follows:

/∗∗∗
∗ C o p y r i g h t (c) 2009 , R o c k w e l l Automation , I n c .
∗ A l l r i g h t s r e s e r v e d .
∗
∗ C o n t r i b u t o r s :
∗ <da t e >: <author >, <a u t h o r emai l> − c h a n g e s
∗∗ /

Each author needs to explain his changes in the code.

1.2 Revision History

The revision history has to be done in a style usable by Doxygen. This means that the history is
independent of the files, but all classes are documented.

1.3 Keywords

The following Keywords should be used in the source code to mark special comments:

• TODO: For comments about possible or needed extensions

• FIXME: To be used for comments about potential (or known) bugs

∗zoitl@acin.tuwien.ac.at

1

2 Datatypes

The following table contains the definitions of important standard datatypes. This is done to
ensure a machine independant defintion of the bit-width of the standard data types. For OpENer-
development these definitions are in the file: src/typedefs.h

defined data type bit-width / description used C-datatype
EIP BYTE 8 bit unsigned char
EIP INT8 8 bit signed signed char
EIP INT16 16 bit signed short
EIP INT32 32 bit signed long
EIP UINT8 8 bit unsigned char
EIP UINT16 16 bit unsigned unsigned short
EIP UINT32 32 bit unsigned unsigned long
EIP FLOAT single precission IEEE float (32 bit) float
EIP DFLOAT double precission IEEE float (64 bit) double
EIP BOOL8 byte variable as boolean value bool

These data types shall only be used when the bit size is important for the correct operation of
the code. If not we advice to use the type int or unsigned int for most variables, as this is the
most efficent data type and can lead on some platforms (e.g., ARM) even to smaller code size.

3 Naming of Identifiers

Every identifier has to be named in English. The first character of an identifier must not contain
underscores (there are some compiler directives which start with underscores and this could lead
to conflicts). Mixed case letters has to be used and the appropriate prefixes have to be inserted
where necessary.

3.1 Variables

Variables have to be named self explanatory. The names have to be provided with the appropriate
prefixes and they have to start with an uppercase letter. In case of combining prefixes, the use
of ranges, arrays, pointer, enumerations, or structures is at first, followed by basic data types
or object prefixes. The only exception are loop variables (thereby the use of i, j, k is allowed).
Only one variable declaration per line is allowed. Pointer operators at the declaration have to be
located in front of the variable (not after the type identifier). If possible initializations have to be
done directly at the declaration.

3.2 Prefixes

The following prefixes have to be applied to identifiers:

Type Definitions Ranges

S for structures
E for enum
T for types (e.g. typedef in C++)

m for member variables of classes
g for global variables
s for static variables
pa for function parameters

Variable Types Basic Data Types
a for arrays
p for pointers
e for enumerations
st for structures

c for characters
b for booleans
n for integers
f for all floating point numbers

2

Examples

struct SCIPObject;
int nNumber;
int *pnNumber = &nNumber;
char cKey;
bool g_bIsInitialized;
float m_fPi = 3.1415;
int anNumbers[10];

3.3 Constants

Constants have to be named with block letters (only upper case letters). If a name consists of
more words, underscores for separation are allowed. Avoid the using “magic numbers” (e.g.
if (x == 3){...}). Instead use constants.

4 Code Formatting

In order to have consitent code formating the rules of GNU shall apply. When using Eclipse as
development environment this format is alread set as preset. By pressing <ctrl><shift>f the
formater will format the code according to these rules.

3

