Micripm

Empowering Embedded Systems

HC/OS-II

and

The STMicroelectronics STR711 Microcontrollers
(Using the CrossWorks for ARM toolchain)

Application Note

AN-1711B

www.Micrium.com

Micripm

pC/0S-11 and the STMicroelectronics STR711

Table Of Contents
1.00 Introduction 3
1.01 uC/0S-View 4
1.02 Directories and Files 6
1.03 Rowley Associates CrossWorks for ARM 8
2.00 Test Code 9
2.01 Test Code, app.c 11
2.02 Test Code, app_cfg.h 14
2.03 Test Code, includes.h 14
2.04 Test Code, os_cfg.h 14
2.05 Test Code, ST_STR711SK_Rowley Ex1.* 14
2.06 Test Code, str711.h 14
2.07 Test Code, threads.js 14
3.00 Board Support Package (BSP) 15
3.01 Board Support Package, bsp*.* 16
References 19
Contacts 19

Micripm

OS-Il and the STMicroelectronics STR711

1.00 Introduction

This document describes example code for using OS-1l with the STMicroelectronics STR71x
Microcontrollers. To test the code, we used a evaluation board which contains a STMicroelectronics
STR711 (ARM7TDMI) microcontroller. The simplified block diagramm of a generic evaluation board is
shown in Figure 1-1.

This example uses the OS-Il port described in AN-1014, which allows you to run the STR71x either in
ARM or Thumb mode.

We also ported 0S-View to this board (see Section 1.01, 0S-View). If you did not purchase
0S-View from Micripm, you can ‘disable’ it by removing the 0S-View files from the build.

We used Rowley Associates CrossWorks for ARM to demonstrate the examples, but other toolchains can
be used. In fact, you only need the evaluation version of CrossWorks for ARM to run the example code.

4 MHz
Oscillator

20-pin JTAG ARM7-Core STR711

DB9 Female UART O 256K Flash
Connector 64K RAM
DB9Y Female usB
UART 1 USB
Connector Connector

1

Pushbutton GPIO In GPIO Out LEDs
Switches

Figure 1-1, The Block Diagram

The 4 LEDs are connected to P0.4, P0.5, P06 and P0.7, the buttons to P0.15 and P1.9.

Micripm

pC/0S-11 and the STMicroelectronics STR711

1.01 pC/OS-View

The application code described in this application note allows you to connect a Windows-based PC to
your target and display run-time information about your target in a Window as shown in Figure 1-2. This is

done via an add-on module called pC/OS-View.

Note that you can ‘disable’ pC/0S-View by removing the pC/OS-View files from the build and setting

OS_VIEW_MODULE to 0 in os_cfg.h. You would need to do this if you didn’t purchase uC/OS-View
from Micrium.

pC/0S-View is a combination of a Microsoft Windows application program and code that resides in your
target system (in this case, the STR711 Evaluation Board). The Windows application connects with your
system via an RS-232C serial port (we used UARTO of the STR711). The Windows application allows you
to 'View' the status of your tasks which are managed by uC/0S-Il.

pC/0S-View allows you to view the following information from a pC/OS-1l based product:

The address of the TCB of each task (up to 63 tasks)

The name of each task (up to 63 tasks)

The status (Ready, delayed, waiting on event) of each task

The number of ticks remaining for a timeout or if a task is delayed
The amount of stack space used and left for each task

The percentage of CPU time each task relative to all the tasks
The number of times each task has been 'switched-in'

The execution profile of each task

More.

pC/0OS-View also allows you to send commands to your target and allow your target to reply back and
display information in a 'terminal window'.

pC/0OS-View is licensed on a per-developer basis. In other words, you are allowed to install uC/OS-
View on multiple PCs as long as the PC is used by the same developer. If multiple developers are using
pC/0OS-View then each needs to obtain their own copy. Contact Micrium for pricing information.

Micripm

pC/0S-11 and the STMicroelectronics STR711

= pC/0S-Yiew ¥3.12 i] 4|
File %iew Setup Trace Window 7

= Task list o o] |
Prio | Id | ame | Skatus | Datal Timeoukt | Stackl CPlLoad | Conkex, ., |

g Cl4C Start Task DELAY g 283512 @ EB9FC 0.02% bt

7 Clad uC/OS-Yiew Ready 292 | 512 @ B7Fg 0.15% 456

14 COF4 uCjOS-II Skat DEL&Y 7 2283512 @BDS4 0.20% 365

15 C09C uljOS-1I Idle Ready 2083 | 512 @ BFFC 99.59% 1190
BELT =T

Mame | Yalue |

05 VERSION 2.80

CPU STR711

#Ticks 3671

#Tasks 4

Current O5_TCE Clad

Int Stack. nja

= Terminal

I

Ready |thes: 5168 [21964 Packets: 456 [456

[tszo0baudencom1

Figure 1-2, uC/0S-View Windows’

‘Viewer’

Micripm

pC/0S-11 and the STMicroelectronics STR711

1.02 Directories and Files

The code and documentation of the port are placed in a directory structure according to “AN-2002,
MC/OS-II Directory Structure”. Specifically, the files are placed in the following directories:

pC/0S-II:

\Micrium\Software\uCOS-II\Source
This directory contains the processor independent code for uC/OS-Il. The version used is 2.80 or
higher.

\Micrium\Software\uCOS-II\Ports\ARM
This directory is the main directory for ARM7 ports.

\Micrium\Software\uCOS-II\Ports\ARM\Generic
This directory is used to place ‘generic’ ARM7 ports (i.e. ports that can be used with any target
board).

\Micrium\Software\uCOS-II\Ports\ARM\Generic\Rowley
This directory contains the standard processor specific files for a pC/OS-Il port assuming the
Rowley Associates toolchain (CrossWorks for ARM). In fact, these files could easily be modified to
work with other toolchains. However, you would place the modified files in a different directory.
Specifically, this directory contains the following files:

os_cpu.h
Os_cpu_a.s
Oos_cpu_c.c
os _dbg c

os_dbg. c is included to provide additional information to Kernel Aware debuggers.

The port can work in either ARM or Thumb mode. The port is fully described in application note
AN-1014 which is available from the Micrium web site. The files are:

AN-1014.PDF
AN-1014-PPT.PDF

Micripm

pC/0S-11 and the STMicroelectronics STR711

pC/0S-View:

\Micrium\Software\uCOSView\Source
This directory contains the processor independent code for uC/OS-View. The version used was
1.20. This directory contains the following files:

os_view.c
os_view.h

\Micrium\Software\uCoOSvView\Ports\ARM7\STR71x\Rowley
This directory is the main directory for pC/OS-View ARM7 ports specifically for
STMicroelectronics STR71x series of microcontrollers.

Application Code:

\Micrium\Software\EvalBoards\ST\STR711\Rowley\Ex1l
This directory is the directory that contains the source code for Example #1 running on a STR711
evaluation board. This directory contains:

app.c
app cfg.h

includes.h

os_cfg.h

ST _STR711SK Rowley Exl.*
str711.h

threads.js

app.c contains the test code, and app cfg.h contains application specific configuration
information, such as task priorities and stack sizes configuration. includes.h contains a master
include file used by the application, and os_cfg.h is the pC/OS-ll configuration file. str711.h
is the header file for the STR711 and threads.js is the Plug-In for the CrossWorks debugger.
ST STR711SK Rowley Ex1.* arethe CrossWorks project files.

\Micrium\Software\EvalBoards\ST\STR711\Rowley\BSP
This directory contains the Board Support Package for the STR711 evaluation board.

\Micrium\Software\EvalBoards\ST\STR711\Doc
This directory is the directory that contains the documentation for the STR711 test code.

Micripm

pC/0S-11 and the STMicroelectronics STR711

1.03 Rowley Associates CrossWorks for ARM

We used the Rowley Associates CrossWorks for ARM 1.5 (build 2) to test the STR711 example. You can
of course use pC/OS-11 with other tools. Figure 1-3 shows the project tree in the CrossStudio.

R D

Froject ltems

x1

T_STR7115K_Rowley_E
-3 Source Files
Q app.c
@ app_cha.h
bsp.c
b baph
=] includes.h
oz_cfoh
oz_cpuh
| 0s_cpu_as
] ox_cpu oo
] oz dboc
-&] D5_WIEW.C
-] OS_WIEWw . H
-] DOS_VIEWe.c
-B] O5_WIEWwe h
- sti711h
uzo_ie
-] ucog_iih
B {23 Spstem Files
o deml ot
2] flash_placement wml
sram_placement. sl
ogem] STR7Tw_Startup.s
-~ =] STR?1_Targets
------- threads. =

Figure 1-3, CrossWorks Project

Figure 1-4 shows all the tasks created in the STR711 example. Each task can be assigned a name, you
can also see the priority and the state.

x| Id |F'ri0rity |State
E xecuting
L A0S dle 15 executing
W aiting
e UG0S e 7 semaphore wait
i Start Task 5§ ready
L uCAOSAN 5. 14 ready
4
@
@
_
=

Figure 1-4, CrossWorks debugger Plug-In (threads.js) for uC/OS-Il , Task List

2.00 Test Code

Micripm

pC/0S-11 and the STMicroelectronics STR711

As mentioned in the previous section, the test code for this board is found in the following directory and

will be briefly described:

\Micrium\Software\EvalBoards\ST\STR711\Rowley\Ex1l

These files in this directory are:

app.c
app_cfg.h

includes.h

os_cfg.h
ST_STR711SK_Rowley Ex1.*
str711.h

threads.js

The test code works either in ARM or Thumb mode. In fact, you can simply select ARM or Thumb
Processor Mode (see Figure 2-1) and ‘rebuild’ the code and it will run just as well.

mtrossstudio for ARM [29 days remaining] - [Help]

File Edit Wiew Search Project Build Debug Target Tools Window Help

mcrussstudiu for ARM [29 days remaining] - [Help]

File Edit “iew Search Project Build Debug Target Tools Window Help

DG LU SR FBBX - [B5 % O-OF-

I

|sT_sTR7115K_F~|| THUME RaM Del~|| % % Y %a | 4= [= @|

|O-@- @ SR {ERX |- -6 | % O-&B-
||s7_sTR711SK_Rv [THUME Ram Del+] % g v Y | 1= 0= B Y 2 @|

ARM Flash Debug |

ARM Flash Debug

THUME Flash Debug
THUME Flash Releage
THUME RAM Debug
CrossStudio prov] THUMB RAM Release

CrossStudio for A egrated development environment {IDE) for buildir

= Source Code Editor - A powerful source code editor with multi-level unda and redo
= Project System - A complete project systern organises your source code and build

= Build System - With a single key press vou can build all your applications in a soluti
debugger,

= ITAG Interface Support - You can download and debug your applications using the
Segger JLINK.

= ARM Simulator - The simulator mimics the behaviour of the ARM CPU, so you can te
= Integrated Debugger - The debugger will help you to quickly find problems in youw
= ARM Flash Programming and Debug - You can download your programs directly
= Integrated Help system - The built-in help system provides context-sensitive help

t@ Getting Started

The CrossStudio Tutorial section gives an overview of how to get started with CrossWorks i

Help | =0= | [apy Flach Release Help | =0nc | [apy Flach Release
[®] welcome! 1 [#] welcome! ARM RéM Debug
ARk RAM Release ARM Rk Releage
Welcom«p., Welcome ..,
Rl Rel
Welcome td. 5 >® br ARM Welcome tq) o or or ARM

THUME Flash Debug
THUME Flach Relzage

CrossStudio for A egr’ated development enviranment {IDE) for buildir

THUMB &M Relesss |

= Source Code Editor - A powerful source code editor with multi-level undo and redo

CrossStudio prov

= Project System - A complete project systern organises your source code and build

= Build System - With a single key press you can build all your applications in a soluti
debugger,

= ITAG Interface Support - You can download and debug your applications using the
Segger JLINK.

= ARM Simulator - The simulator mimics the behaviour of the ARM CPU, so you can te
= Integrated Debugger - The debugger will help you to quickly find problems in vour
= ARM Flash Programming and Debug - Tou can download vour programs directly
= Integrated Help system - The built-in help system provides context-sensitive help

ml Getting Started

The CrossStudio Tutorial section gives an overview of how to get started with Crossworks 1

Figure 2-1, Building either ARM (left) or Thumb (right) mode code

Micripm

pC/0S-11 and the STMicroelectronics STR711

As mentioned in AN-1014, pC/OS-1l1 must run in SVC mode. Therefore the preprocessor definition
SUPERVISOR_START must be set (see Figur 2-2).

2
Lanfiguratior: Target | Asse.. | Build | Compi..| Linker | Section| Printis... Plep...|
I Common LI Ignare Includes N
Foiset SUPERVISOR_START =

Preprocessor Undefinitions

System Include Directaries

Undefine All Preprocesszar Definitions Mo

Uzer Include Directories D-\\Projekte\\Micriumi\\Softwa...

Solution 'ST_STR711SK_Rowley_...
F- 7] ST_STR711SK_Raowley Ex1

Preprocessor Definitions

Specifies one or mare preprocessor definitions.

oK I Cancel |

Figure 2-2, Preprocessor Definitions, SUPERVISOR_START

Depending from where you have installed pC/OS-1l you must set the user include directories.
In Figure 2-3 uC/OS-Il was installed in D: \Projekte.

2l
Configuration: Taget | Asse.. | Build | Compi..| Linker | Section | Printff.. Plep...|
I Common j Ignore Includes Mo
. Preprocessor Definitions SUPERYISOR_START
Froject:

Freproceszor Undefinitions

Spstem Include Directories

Undefine All Preprocessor Defintions Mo

Uszer Include Directories AAPots\WARMPWS TR\ R owley ==

User Include Directories

Solution 'ST_STRT115K_Rowley_...
B [0] 5T_STR7115K_Raowley_Exl

&+ H

D “AProjektehMicriumhS oftwarehE valB oardzhSTWS TR 1R owleyhEx1
D:4Projekteticrium'S oftware\E valB oaids\STAS TRY11\RowleyBSP
D:MProjekteMicriumtS oftwarebuCOS-14\S ource

D:4ProjektetMicrium’5 oftware \uC0 5 -1\ Ports\A R MAG enenichR owley
D:ProjekteMicriumtS oftwaretuC0SView\Source
D:4Projekteticrium’S oftware uCO5View Ports ARM PSS TR 7T xR owley

1] I Cancel

Figure 2-3, User Include Directories

10

Micripm

pC/0S-11 and the STMicroelectronics STR711

2.01 Test Code, app.c

app.c demonstrates some of the capabilities of pC/OS-1l. The code doesn'’t really do anything useful
except create an application task that blinks the 4 user LEDs on the evaluation board.

Listing 2-1, main()

void main (void) (1)
{ INT8U err;
BSP_IntDisAll(); (2)
0SInit(); (3)
OSTaskCreateExt (AppTaskStart, (4)

(void *)0,

(0OS_STK *)&AppTaskStartStk[APP_TASK START STK SIZE - 1],
APP_TASK START_ PRIO,

APP TASK START PRIO,

(OS_STK *) &AppTaskStartStk([0],

APP_TASK START STK SIZE,

(void *)o0,

0S_TASK_OPT_STK CHK | OS_TASK OPT STK CLR);

#if OS_TASK NAME SIZE > 13
OSTaskNameSet (APP_TASK START_ PRIO, "Startup", s&err); (5)

#endif

#if OS TASK NAME SIZE > 14

OSTaskNameSet (OS_IDLE PRIO, "uC/0S-II Idle", serr);
#if OS_TASK STAT EN > 0

OSTaskNameSet (0S_STAT PRIO, "uC/OS-II Stat", &err);

#endif
#endif
OSstart () ; (6)

}

L2-1(1) As with most C applications, the code starts in main ().

L2-1(2) We start off by calling a BSP function (see bsp. c) that will disable all interrupts. We do this to
ensure that initialization doesn’t get interrupted in case we do a ‘warm restart’.

L2-1(3) As with all pC/OS-Il applications, you need to call 0SInit () before creating any tasks or
other kernel objects.

L2-1(4) We then create at least one task (in this case we used OSTaskCreateExt () to specify
additional information about the task to pC/OS-Il). It turns out that pC/OS-IlI creates one and
possibly two tasks in O0SInit(). As a minimum, pC/OS-ll creates an idle task
(0S_TaskIdle() which is internal to pC/OS-Il) and 0S TaskStat() (if you set
OS_TASK STAT ENto 1in OS_CFG.H). 0S TaskStat () is also an internal task in pC/OS-
.

L2-1(5) As of V2.6x, you can now name uC/OS-Il tasks (and other kernel objects) and be able to

display task names at run-time or with a debugger. In this case, we name our first task as well
as the two internal pC/OS-11 tasks.

11

L2-1(6)

Micripm

pC/0S-11 and the STMicroelectronics STR711

We finally start pC/OS-ll by calling O0SStart (). pC/OS-Il will then start executing
AppStartTask () since that's the highest priority task created.

Listing 2-2, AppTaskStart()

static void AppStartTask (void *p_arg)
{
p_arg = p_arg;

BSP_Init();

#if OS_TASK STAT EN > 0
OSStatInit();
#endif

#if OS_VIEW MODULE > 0
OSView_ Init(19200);

OSView_TerminaleSetCallback(AppTerminale);

OSView RxIntEn () ;

#endif
LED Off (0); (6)
while (TRUE) {
for (1 = 1; 1 <= 4; i++) { (7)
LED On (i)
OSTimeDlyHMSM (0, O, 0, 100);
LED Off (1) ;
}
for (1 = 1; 1 <= 4; i++) {

L2-2(1)

L2-2(2)

L2-2(3)

L2-2(4)

L2-2(5)

LED On(5 - 1i);
OSTimeDlyHMSM(0, 0, O, 100);
LED Off(5 - 1i);

BSP Init () is called to initialize the Board Support Package — the I/Os, the tick interrupt,
and soon. BSP_Init () will be discussed in the next section.

OSStatInit () is used to initialize pC/OS-II's statistic task. This only occurs if you enable
the statistic task by setting OS TASK STAT EN to 1 in OS _CFG.H. The statistic task
measures overall CPU usage (expressed as a percentage) and also, performs stack checking
for all the tasks that have been created with OSTaskCreateExt () with the stack checking
option set. Stack checking is useful to have since it gives you warning about possible stack
overflow problems.

OSview Init () is called to initialize the pC/OS-View module. Here we need to specify the
baud rate of the RS-232C port connecting the the pC/0OS-View ‘viewer'.

OSView TerminalRxSetCallback () allows you to specify the name of a function that will
be called by uC/OS-View when characters are typed on the ‘Terminal Window’ of the
pC/OS-View viewer.

OSView RxIntEn() simply enables receive interrupts from the UART used for
pC/OS-View.

12

Micripm

pC/0S-11 and the STMicroelectronics STR711

L2-2(6) LED Off() is a BSP function that is used to turn off LEDs on the
evaluation board. Passing 0 as an argument specifies to turn off ALL the user LEDs on the
board.

L2-2(7) The task then enters an infinite loop. This task simply turns on and then off each LED on the
evaluation board one after the other from left to right and then from right to left. Each LED is
turned on for 100 mS.

The LEDs are a modification of the original evaluation board, and connected to P0.4 to P0.7.

13

Micripm

pC/0S-11 and the STMicroelectronics STR711

2.02 Test Code, app_cfg.h

This file is used to establish the task priorities of each of the tasks in your application as well as the stack
size for those tasks. The reason this is done here is to make it easier to configure task priorities for your
entire application. In other words, you can set the task priorities of all your tasks in one place.

2.03 Test Code, includes.h

includes.h is a ‘master header file that contains #include directives to include other header files.
This is done to make the code cleaner to read and easier to maintain.

2.04 Test Code, os_cfg.h

This file is used to configure pC/OS-1l and defines the maximum number of tasks that your application
can have, which services will be enabled (semaphores, mailboxes, queues, etc.), the size of the idle and
statistic task and more. In all, there are about 60 or so #define that you can set in this file. Each entry is

commented and additional information about the purpose of each #define can be found in the uC/OS-Il
book. os_cfg.h assumes you have uC/0S-11 V2.80 or higher but also works with previous versions of
pC/OS-II.

2.05 Test Code, ST_STR711SK_Rowley Ex1.*

These files are CrossWorks project files.

2.06 Test Code, str711.h

str711.h is the header file for the STR711.

2.07 Test Code, threads.js

threads.js is the ‘Plug-In’ for the CrossWorks debugger.

14

Micripm

pC/0S-11 and the STMicroelectronics STR711

3.00 Board Support Package (BSP)

BSP stands for Board Support Package and provides functions to encapsulate common 1/O access
functions in order to make it easier for you to port your application code. In fact, you should be able to
create other applications using the STR711 board and reuse these functions, thus saving you a lot of time.

The BSP performs the following functions:

- Determine the STR711’s CPU clock and peripheral frequencies
- Initialize the interrupt vector table

- Configure the 1/Os for the board

- Read the status of the board’s push buttons

- Control the board’s LEDs

- Handle interrupts

- pC/OS-View timer functions
- Handling of pC/OS-II's tick timer

- Set up the EIC (Enhanced Interrupt Controller)
The BSP for the STR711 evaluation board is found in the follow directory.
\Micrium\Software\EvalBoards\ST\STR711\Rowley\BSP
The BSP files are:

bsp.c
bsp.h

15

Micripm

pC/0S-11 and the STMicroelectronics STR711

3.01 Board Support Package, bsp*.*

We will not be discussing every aspect of the BSP but only cover topics that require special attention.

Your application code must call BSP_Init () to initialize the BSP. BSP Init () in turn calls other
functions as needed.

Listing 3-1, BSP_Init()

void BSP Init (void)

{

PRCCU_PLLICR
PRCCU_CFR

BSP IRQ VECTOR ADDR
BSP IRQ ISR ADDR

BSP FIQ VECTOR ADDR
BSP FIQ ISR ADDR

= 0x00000070; (1)
|= 0x00000003;
0xES59FF018; (2)

(INT32U)OS_CPU_IRQ ISR;

0XE59FF018;
(INT32U)OS_CPU FIQ ISR;

BSP UNDEF INSTRUCTION VECTOR ADDR = OxXEAFFFFFE; (3)
BSP_SWI VECTOR ADDR = OxXEAFFFFFE;

BSP_PREFETCH ABORT VECTOR_ADDR = OxEAFFFFFE;

BSP DATA ABORT VECTOR ADDR = OxXEAFFFFFE;

BSP_FIQ VECTOR ADDR = OxXEAFFFFFE;

BSP_Set CPU_ClkFregPeripheral(); (4)
while (BSP_Peripheral Clkl Freq != BSP CPU FREQ) { (5)

BSP_Set CPU_ClkFregPeripheral();

}

BSP IO Init(); (6)
EIC Init(); (7)
LED_Init(); (8)
Tmr TickInit(); (9)

}

L3-1(1)

L3-1(2)

L3-1(3)

L3-1(4)

L3-1(5)

The STR711’s PLL is set up to produce a CPU clock frequency of 32 MHz. Assumed we have
a CK input frequency of 4 MHz.

At location 0x00000018 we ‘force’ the opcode for LDR PC, [PC, #0x18] such that when the
CPU recognizes an IRQ interrupt, it will load the contents of location 0x00000038 into the PC
(i.e. the address of 0OS_CPU IRQ ISR()). The same applies for the FIQ, except that we jump
to 0S CPU FIQ ISR().

We then use instructions that loop to themselves for the other exceptions.

BSP Set CPU ClkFregPeripheral() reads the appropriate STR711 registers to
determine the frequency at which the board’s peripherals are running.

After modifying registers in the Power, Reset, Clock, and Control Unit, several CPU cycles

must elapse before a new clock frequency takes effect. Therefore, we continuously call
BSP_Set CPU ClkFregPeripheral () until it indicates that the desired CPU frequency is

16

Micripm

pC/0S-11 and the STMicroelectronics STR711

being used.

L3-1(6) We then call BSP_IO Init () to initialize the I/O ports.

L3-1(7) We then call EIC Init () toinitialize the interrupt controller.

L3-1(8) We initialize the LED services provided by the BSP. At this point, your application can call
LED On(), LED Off () or LED Toggle() to turn on, off and toggle (respectively) the
board’s LEDs.

L3-1(9) We then call Tmr TickInit () which will initialize Timer #0 to generate interrupts for the
pC/0OS-II clock tick. The code for this function is described below.

Listing 3-2, Tmr_Ticklnit()

void Tmr_TickInit (void)

{

INT8U err;
BSP TmrO Rst Value = (BSP_Peripheral Clk2 Freqg / (BSP_TMRO PRESCALER + 1)) /

OS_TICKS_ PER SEC; (1)
err = BSP_VectsSet ((INT16U) BSPiTMRoilNT, (BSPiPFNCT) TmriTickISRiHandler) ;
if (err == BSP_VECT SET) ({

EIC->SIR[BSP TMRO INT] |= 0x00000001; (2)
}
EIC_IER = 1 << BSP_TMRO_INT;
TIMO CR2 = 0x4000 | BSP_TMRO_ PRESCALER;
TIMO_CR1 = 0x8040;
TIMO_OCAR = BSP_Tmr0 Rst Value;
TIMO CNTR = OxFFFO;

}

L3-2(1) A reset value for Timer #0 is calculated so that 0S_TICKS PER_SEC tick interrupts will be
received each second.

L3-2(2) A pointer to Tmr TickISR Handler (), the handler for the tick interrupt, is passed to

BSP VectSet (). BSP VectSet () will place the pointer in a table of interrupt handlers that
is accessed whenever an interrupt occurs. A priority for the tick interrupt is also set.

When Timer #0 issues an interrupt, the processor vectors to 0S CPU IRQ ISR() which then calls
OS_CPU IRQ ISR Handler () (see bsp.c). 0OS_CPU IRQ ISR Handler () reads the EIC to obtain

an index to

the table of interrupt handlers set up by BSP vectSet (). When a tick interrupt occurs,

Tmr TickISR Handler (), which is shown in Listing 3-3, will be called.

17

Micripm
pC/0S-11 and the STMicroelectronics STR711

Listing 3-3, Tmr_TickISR_Handler()

void Tmr_ TickISR Handler (void)
{

TIMO_SR &= ~0x4000; (1)
EIC_IPR = 0x00000001; (2)
TIMO_OCAR = BSP_Tmr0 Rst Value; (3)
TIMO _CNTR = OxFFFO; (4)
0STimeTick () ; (5)

}

L3-3(1) The timer’s interrupt pending bit is cleared.

L3-3(2) The timer’s interrupt pending bit within the EIC is also cleared.

L3-3(3) The timer is reset to the value that was calculated in Tmr TickInit ().
L3-3(4) A write to the timer’s counter register restarts the timer.

L3-3(5) OSTimeTick () is called to handle the pC/OS-Il clock tick.

You should note that ALL of your ISRs should be written as ‘void MyISR(void)’ functions as shown. Refer
to AN-1014 for details.

18

References

Micripm

pC/0S-11 and the STMicroelectronics STR711

MC/OS-Il, The Real-Time Kernel, 2nd Edition

Jean J. Labrosse
R&D Technical Books, 2002
ISBN 1-57820-103-9

Contacts

Rowley Associates Limited

8 Silver Street

Dursley

Gloucestershire

GL11 4ND

UNITED KINGDOM

+44 (0)1453 547916

+44 (0)1453 544068 (FAX)
e-mail: enquiries@rowley.co.uk
WEB: www.rowley.co.uk

Micripm

949 Crestview Circle

Weston, FL 33327

USA

+1 954 217 2036

+1 954 217 2037 (FAX)

e-mail: Jean.Labrosse@Micrium.com
WEB: www.Micrium.com

R&D Books, Inc.

1601 W. 23rd St., Suite 200
Lawrence, KS 66046-9950

USA

(785) 841 1631

(785) 841 2624 (FAX)

e-mail: rushorders@cmpbooks.com
WEB: www.cmpbooks.com

Validated Software

Lafayette Business Park

2590 Trailridge Drive East, Suite 102
Lafayette, CO 80026

USA

+1 303 531 5290

+1 720 890 4700 (FAX)

e-mail: Sales@ValidatedSoftware.com
WEB: www.ValidatedSoftware.com

19

