
How	to	Allocate	Dynamic	Memory	Safely	|	Niall	Murphy	

1	
	
www.barrgroup.com		|		Copyright	Barr	Group.		All	rights	reserved.	

	

	
	

	
	

How to Allocate Dynamic Memory Safely 
By	Niall	Murphy	

	
Whether	 you're	 using	 only	 static	 memory,	 a	
simple	 stack,	 or	 dynamic	 allocation	 on	 a	 heap,	
you	 have	 to	 proceed	 cautiously.	 Embedded	
programmers	 can't	 afford	 to	 ignore	 the	 risks	
inherent	in	memory	utilization.	
	
Every	 program	 uses	 random	 access	 memory	
(RAM),	 but	 the	 ways	 in	 which	 that	 memory	 is	
divided	 among	 the	 needy	 parts	 of	 the	 system	
varies	 widely.	 This	 article	 surveys	 the	 options	
available	in	hopes	that	the	reader	will	be	better	
equipped	 to	 choose	 an	 approach	 for	 a	 given	
project.	
	
The	mechanisms	 include	 statically	allocating	all	
memory,	using	one	or	more	stacks,	and	using	a	
heap.	 We	 will	 examine	 how	 the	 heap	
implementation	 can	 impact	 fragmentation	 and	
real-time	performance.	
	
Static Memory Allocation 
	
If	all	memory	is	allocated	statically,	then	exactly	
how	each	byte	of	RAM	will	be	used	during	 the	
running	 of	 the	 program	 can	 be	 established	 at	
compile	 time.	 The	 advantage	 of	 this	 in	
embedded	 systems	 is	 that	 the	 whole	 issue	 of	
memory-related	 bugs—due	 to	 leaks,	 failures,	
and	 dangling	 pointers—simply	 does	 not	 exist.	
Many	compilers	for	8-bit	processors	such	as	the	
8051	 or	 PIC	 are	 designed	 to	 perform	 static	
allocation.	All	data	 is	either	global,	 file	static	or	
function	static,	or	local	to	a	function.	The	global	
and	static	data	is	allocated	in	a	fixed	location,		
	

	
since	 it	 must	 remain	 valid	 for	 the	 life	 of	 the	
program.	
	
The	 local	data	 is	 stored	 in	a	block	set	aside	 for	
each	function.	This	means	that	if	a	function	has	
a	 local	 variable	 x,	 then	 x	 is	 stored	 in	 the	 same	
place	 for	 every	 invocation	 of	 that	 function.	
When	the	function	is	not	running,	that	location	
is	 usually	 not	 used.	 This	 approach	 is	 used	 in	 C	
compilers	when	the	hardware	is	not	capable	of	
providing	 suitable	 support	 for	 a	 stack.	 Figure	1	
shows	 the	 memory	 organization	 with	 no	 heap	
and	 no	 stack,	 just	 globals	 and	 one	 static	 block	
per	function.	
	

	
	
Figure	1.	Memory	organization	with	no	heap	

and	no	stack	
	
This	approach	prohibits	 the	use	of	 recursion	or	
any	 other	 mechanism	 that	 requires	 reentrant	
code.	 For	 example,	 an	 interrupt	 routine	 can't	
call	 a	 function	 that	 may	 also	 be	 called	 by	 the	
main	flow	of	execution.	In	return	for	this	loss	of	
flexibility,	 the	 programmer	 is	 guaranteed	 no	
run-time	memory	allocation	 issues.	 It	might	be	
useful	if	all	compilers	gave	the	programmer	the	
option	 of	 not	 using	 the	 stack.	 By	 statically	



How	to	Allocate	Dynamic	Memory	Safely	|	Niall	Murphy	

2	
	
www.barrgroup.com		|		Copyright	Barr	Group.		All	rights	reserved.	

defining	 all	 of	 the	 space,	 the	 programmer	
sacrifices	 some	 flexibility	 and	 efficiency,	 in	
exchange	for	extra	robustness.	
	
Some	 clever	 compilers	 may	 establish	 that	 two	
particular	 functions	 can't	 be	 simultaneously	
active	 and,	 so,	 allow	 the	 memory	 blocks	
associated	with	those	two	functions	to	overlap.	
This	 approach	 puts	 an	 extra	 restriction	 on	 the	
code	that	function	pointers	can't	be	used.	
	
To	benefit	 from	the	 inherent	memory	safety	of	
a	 completely	 static	environment,	 it's	 important	
that	the	programmer	avoid	introducing	dangers	
by	 trying	 to	 implement	dynamic	memory	 (such	
as	reusing	global	data	for	different	purposes)	on	
top	of	the	static	environment.	
	
For	large	systems,	completely	static	allocation	is	
not	feasible	since	an	enormous	amount	of	RAM	
would	 eventually	 be	 required	 to	 satisfy	 every	
possible	execution	path	of	the	program.	
	
Stack-Based Memory Management 
	
The	next	step	up	in	complexity	is	to	add	a	stack.	
Now	 a	 block	 of	 memory	 is	 required	 for	 every	
call	of	a	function,	and	not	just	a	single	block	for	
each	 function	 in	 existence.	 The	 blocks	 are	
stored	 on	 a	 stack,	 and	 are	 usually	 called	 stack	
frames.	
	
The	 stack	 grows	 and	 shrinks	 as	 the	 program	
executes,	 and	 for	 many	 programs,	 it	 isn't	
possible	 to	 predict,	 at	 compile	 time,	 what	 the	
worst	 case	 stack	 size	 will	 be.	 A	 multitasking	
system	 will	 have	 one	 stack	 per	 task	 (plus	
possibly	 an	 extra	 one	 for	 interrupts).	 Some	
judgment	must	be	exercised	 to	make	sure	 that	
each	stack	 is	big	enough	 for	all	of	 its	activities.	
It's	 an	awful	 shame	 to	 suffer	 from	an	untimely	
stack	 overflow	 especially	 if	 one	 of	 the	 other	
stacks	has	a	reserve	of	space	that	it	never	uses.	
Unfortunately,	most	embedded	systems	do	not	
support	 any	 kind	 of	 virtual	 memory	
management	 that	 would	 allow	 the	 tasks	 to	
draw	from	a	common	pool	as	the	need	arises.	

	

	
	

Figure	2.	The	life	of	a	simple	stack	
	
One	 rule	 of	 thumb	 is	 to	make	 each	 stack	 50%	
bigger	than	the	worst	case	seen	during	testing.	
In	 order	 to	 apply	 this	 rule,	 the	 programmer	
must	know	how	big	the	stack,	or	stacks,	became	
during	 testing.	 One	 simple	 technique	 is	 to	
"paint"	 the	 stack	 space	 with	 a	 simple	 pattern.	
As	the	stack	grows	and	shrinks	 it	will	overwrite	
the	area	with	 its	data.	At	a	 later	time,	a	simple	
loop	 can	 run	 through	 the	 stack's	 predefined	
area	 to	detect	 the	 furthest	extent	of	 the	stack.	
Figure	 2	 shows	 an	 example	 of	 the	 life	 of	 a	
simple	stack.	The	simple	pattern	written	to	the	
stack	 should	 be	 non-zero,	 since	 it	 is	 quite	
common	 to	 have	 data	 on	 the	 stack	 which	 has	
been	 assigned	 to	 zero.	 It	 would	 be	 difficult	 to	
distinguish	this	data	from	unused	stack	space.	
	
Many	RTOSes	offer	a	stack	size	tracing	feature.	
If	 yours	 does	 not,	 or	 if	 you	 are	 not	 using	 an	
RTOS,	 it's	not	difficult	to	 implement	 it	yourself,	
though	 it	 is	 likely	 to	 be	 non-portable.	 The	
technique	can	be	used	during	the	testing	phase	
to	refine	the	stack	sizes,	and	it	can	also	be	used	
on	a	production	system	to	give	early	warning	of	
a	 stack	 that	 exceeds	 a	 watermark	 that	 the	
designers	did	not	expect	 to	be	 reached.	 In	 this	
case,	 the	 watermark	 level	 on	 the	 stack	 is	
checked	 to	 see	 if	 the	 pattern	 has	 been	
overwritten.	An	expensive	measurement	of	the	
exact	 extent	 of	 the	 stack	 is	 unnecessary.	
Checking	 the	watermark	 on	 every	write	 to	 the	
stack	 would	 be	 difficult	 and	 expensive,	 but	 it	
can	 be	 checked	 easily	 on	 a	 timed	 basis.	 This	
may	 not	 catch	 a	 stack	 overrun	 due	 to	 infinite	



How	to	Allocate	Dynamic	Memory	Safely	|	Niall	Murphy	

3	
	
www.barrgroup.com		|		Copyright	Barr	Group.		All	rights	reserved.	

recursion,	which	would	overflow	the	stack	very	
quickly,	 but	 it	 would	 catch	 a	 case	 where	 the	
stack	 grew	 a	 small	 amount	 bigger	 than	 the	
designers	expected.	
	
The	previously	described	 technique	 fails	 in	one	
scenario.	 Consider	 a	 large	 local	 array	 which	
extends	 beyond	 the	 top	 of	 the	 stack.	 If	 the	
program	does	 not	write	 any	 data	 to	 the	 array,	
the	pattern	will	not	get	overwritten.	The	highest	
legal	 piece	 of	 stack	 space	 will	 contain	 the	
pattern,	and	so	it	will	look	as	if	the	stack	did	not	
overflow.	 Data	 pushed	 onto	 the	 stack	 will	
overwrite	 some	 other	 area	 of	 memory,	 but	
checking	 the	 stack	 will	 indicate	 no	 problem.	 If	
you	guess	 that	 this	 is	what	has	happened	 then	
the	 easiest	 way	 to	 check	 is	 to	make	 the	 stack	
size	much	bigger,	and	check	the	size	again.	Now	
that	the	array	is	within	the	bounds	of	the	bigger	
stack,	 the	 true	 worst	 case	 stack	 size	 will	 be	
found.	
	
Heap-Based Memory Management 
	
Many	 objects,	 structures,	 or	 buffers	 require	 a	
lifetime	 that	 does	 not	match	 the	 invocation	 of	
any	 one	 function.	 This	 is	 particularly	 true	 in	
event-driven	programs,	which	is	typical	of	many	
embedded	 systems.	 One	 event	 may	 cause	 an	
item	to	be	created,	and	that	item	will	remain	in	
use	until	some	other	event	 leads	to	 its	demise.	
In	C	programs,	heap	management	is	carried	out	
by	 the	 malloc()	 and	 free()	 functions.	 The	
malloc()	 function	 allows	 the	 programmer	 to	
acquire	 a	 pointer	 to	 an	 available	 block	 of	
memory	of	a	 specified	 size.	 The	 free()	 function	
allows	 the	 programmer	 to	 return	 a	 piece	 of	
memory	 to	 the	heap	when	 the	 application	has	
finished	with	it.	
	
While	 stack	 management	 is	 handled	 by	 your	
compiler,	 heap	 management	 requires	 care	 by	
the	 programmer.	 A	 number	 of	 particularly	
devious	 bugs	 can	 creep	 into	 your	 program	 by	
way	of	the	heap.	
	

At	 a	 certain	 point	 in	 the	 code,	 you	 may	 be	
unsure	if	a	particular	block	is	no	longer	needed.	
If	you	free()	this	piece	of	memory,	but	continue	
to	 access	 it	 (probably	 via	 a	 second	 pointer	 to	
the	same	memory),	your	program	may	function	
perfectly	 until	 that	 particular	 piece	 of	memory	
is	 reallocated	 to	 another	 part	 of	 the	 program.	
Then	 two	 different	 parts	 of	 the	 program	 will	
proceed	to	write	over	each	other's	data.	 If	you	
decide	to	not	 free	the	memory	on	the	grounds	
that	it	may	still	be	in	use,	then	you	may	not	get	
another	opportunity	to	free	it	(since	all	pointers	
to	 the	 block	 may	 have	 gone	 out	 of	 scope	 or	
been	 reassigned	 to	 point	 elsewhere).	 In	 this	
case,	the	program	logic	will	not	be	affected.	But	
if	the	piece	of	code	that	leaks	memory	is	visited	
on	 a	 regular	 basis,	 the	 leak	 will	 tend	 towards	
infinity,	 as	 the	 execution	 time	 of	 the	 program	
increases.	
	
Ultimately,	the	amount	of	physical	memory	will	
decide	 how	 long	 the	 program	 can	 execute.	On	
many	 desktop	 applications,	 a	 small	 leak	 is	
acceptable,	 say	 a	 compiler	 which	 leaks	 100	
bytes	 for	 every	 1,000	 lines	 compiled.	 Such	 a	
program	can	still	happily	compile	a	100,000-line	
file	 on	 a	 modern	 PC,	 since	 on	 exit	 of	 the	
program	 all	 allocated	 memory	 will	 be	
recovered.	 However,	 on	 many	 embedded	
systems,	 no	 upper	 limit	 on	 the	 life	 of	 the	
program	 is	 acceptable.	 Any	 memory	 leak	 is	 a	
bug	 and	 should	 be	 rectified	 by	 correcting	 the	
logic	of	the	application	program.	
	
In	 addition	 to	 leaks,	 there	 is	 another	 problem	
called	 fragmentation,	which	 can't	 be	 corrected	
at	the	application	level.	This	problem	is	inherent	
in	 most	 implementations	 of	 malloc().	 It	 is	
caused	by	the	blocks	of	memory	available	being	
broken	 down	 into	 smaller	 pieces	 as	 many	
allocations	and	frees	are	performed.	
	
Does	 this	mean	that	malloc()	and	 free()	cannot	
be	 used	 in	 embedded	 systems?	 No,	 but	 there	
are	 so	 many	 restrictions	 that,	 in	 many	 cases,	
programmers	 choose	 against	 it	 or	 they	 write	
their	 own	 restricted	 versions	 of	 malloc()	 and	
free().	In	order	to	better	understand	where	the	



How	to	Allocate	Dynamic	Memory	Safely	|	Niall	Murphy	

4	
	
www.barrgroup.com		|		Copyright	Barr	Group.		All	rights	reserved.	

limitations	 lie,	 we	 will	 now	 examine	 how	
malloc()	works.	The	following	description	is	of	a	
typical	 implementation,	 but	 the	 standard	 C	
specification	 does	 not	 demand	 that	 it	 be	
implemented	this	way.	
	

	
	
Figure	3.	A	heap	in	its	initial	state	and	after	a	

single	allocation	of	10	bytes	
	
The	 heap	 is	 a	 large	 block	 of	 memory	 that	 is	
made	up	of	smaller	blocks	of	memory	to	to	the	
application	and	blocks	that	are	free.	Each	block,	
allocated	 or	 freed,	 contains	 a	 header.	 Figure	 3	
shows	a	heap	in	its	initial	state	and	the	result	of	
a	 single	 allocation	 of	 10	 bytes.	 The	 Free	 List	
pointer	 always	 points	 to	 the	 first	 available	
block.	When	an	allocation	is	requested,	this	 list	
is	 iterated,	 searching	 for	 a	 block	 to	 return.	
Ideally,	 a	 block	 of	 exactly	 the	 right	 size	 is	
available.	 If	 not,	 some	 larger	 block	 is	 broken	
into	two.	In	this	way,	an	initial	heap	of	one	large	
block	can	become	a	heap	containing	a	linked	list	
of	many	small	blocks	that	are	free,	interspersed	
with	 many	 blocks	 that	 have	 been	 allocated	 to	
the	application.	
	

	
	
Figure	4.	The	heap	after	a	number	of	allocations	

	
Figure	 4	 shows	 the	 heap	 after	 a	 number	 of	
allocations.	 On	 the	 left-hand	 side,	 the	 free	 list	
still	only	contains	a	single	element.	Next,	one	of	
the	 blocks	 is	 freed	 and	 the	 right-hand	 side	
shows	 a	 free	 list	 with	 a	 second	 element.	 The	
available	 block	 is	 of	 size	 15	 bytes.	 If	 an	
allocation	 of	 10	 bytes	 took	 place,	 the	 block	 of	
15	may	be	broken	down	into	a	block	of	10	and	a	
block	containing	the	remainder.	The	remainder	
block	may	 be	 so	 small	 that	 no	 request	 is	 ever	
made	that	it	can	satisfy.	While	free	blocks	such	
as	 this	may	be	merged	 later	with	adjacent	 free	
blocks,	 there	 is	a	danger	 that	some	will	be	 lost	
forever.	
	
The	 danger	 of	 fragmentation	 has	 been	
overestimated	 by	 academic	 experiments	 that	
focused	 on	 randomly	 sized	 allocations.	 In	
practice,	 allocations	 tend	 to	 come	 in	 a	 limited	
number	of	sizes.	In	a	survey	of	a	number	of	Unix	
applications,	 it	 was	 found	 that	 90%	 of	
allocations	were	covered	by	six	sizes,	and	99.9%	
of	allocations	were	covered	by	141	sizes.	1	This	
means	 that	 the	 probability	 of	 finding	 a	 block	
that	 exactly	 matches	 the	 size	 of	 any	 given	
request	 is	 far	 higher	 than	 would	 be	 estimated	
given	a	random	distribution	of	allocation	sizes.	
	
I	believe	that,	in	embedded	systems,	the	variety	
of	sizes	allocated	in	any	one	application	is	even	
smaller.	 File	 and	 string	 handling	 are	 rarer	 in	
embedded	 applications,	 and	 those	 are	 areas	



How	to	Allocate	Dynamic	Memory	Safely	|	Niall	Murphy	

5	
	
www.barrgroup.com		|		Copyright	Barr	Group.		All	rights	reserved.	

where	 allocation	 sizes	 tend	 to	 vary	 the	 most.	
Allocation	 of	 space	 for	 data	 structures	 will	 be	
more	restricted,	since	their	size	does	not	vary	at	
run	time.	While	the	request	pattern	may	reduce	
fragmentation,	 we	 still	 want	 our	 malloc()	 and	
free()	code	to	keep	it	to	a	minimum.	
	
Fragmentation	can	also	be	reduced	by	using	the	
appropriate	 policy	when	 allocating	 and	 freeing	
blocks.	Possible	allocation	policies	include:	
	

• First	Fit:	allocate	(and	possibly	split)	the	
first	block	found	that	is	large	enough	to	
fulfill	the	request	

• Best	 Fit:	 allocate	 the	 best	 fit	 after	 an	
exhaustive	search	

	
Possible	free	list	management	policies	include:	
	

• Address	Order:	Sort	the	free	list	in	order	
of	 address,	 to	 simplify	 merging	 of	
adjacent	free	blocks	

• Recently-Used	 Order:	 Maintain	 the	 list	
in	 most	 recently	 used	 order,	 to	 match	
patterns	 of	 use	where	 similar	 sizes	 are	
allocated	and	freed	in	bursts	

	
Unfortunately,	 the	 policies	 that	 lead	 to	 least	
fragmentation	(Best	Fit	and	address	order	 lists)	
take	the	most	 time	to	allocate	and	free	blocks.	
So	 the	 choice	 of	 algorithm	 is	 going	 to	 involve	
trade-offs.	 Careful	 design	 of	 the	 heap	
mechanism	 can	 lead	 to	 systems	 that	 suffer	
fragmentation	 losses	 of	 only	 1%	 in	 Unix	
applications.2	 This	 is	 a	 small	 amount	 if	 it	 is	
constant,	 but	 it's	 difficult	 to	 establish	 that	 a	
program	 will	 not	 make	 a	 pattern	 of	 requests	
that	 increases	 that	amount	at	some	 later	point	
in	its	execution.	The	conclusion	is	that	heap	use	
does	 involve	 an	 element	 of	 risk,	 which	 the	
programmer	may	choose	to	accept	in	return	for	
a	more	flexible,	RAM-efficient	system.	
	
 
 
	

Static Memory Preallocation 
	
Projects	that	either	do	not	need	the	complexity	
of	 a	 full	 heap	 or	 can't	 afford	 the	 risk	 of	
fragmentation,	can	use	a	technique	that	allows	
allocation,	 but	 not	 freeing.	 This	 means	 that	
after	a	program	has	 completed	 its	 initialization	
code,	the	main	loop	of	the	program	(or	the	loop	
of	each	of	its	tasks)	will	not	allocate	any	further	
memory.	 This	 technique	 can	 be	 implemented	
with	 the	 normal	 malloc()	 routine,	 but	 I've	
always	 found	 it	 useful	 to	 write	 a	 custom	
version.	 My	 custom	 version	 has	 the	 following	
advantages	 over	 using	 the	 normal	 malloc()	
routine:	
	

• The	 overhead	 of	 the	 headers	 on	 each	
block	is	avoided.	

• The	 routine	 can	 be	 disabled	 once	
initialization	is	complete.	
	

This	 technique	 also	 has	 the	 following	
advantages	over	declaring	all	memory	globally.	
	

• Different	 start-up	 sequences	 can	
allocate	memory	 to	different	purposes,	
without	 the	 programmer	 having	 to	
explicitly	 consider	 which	 items	 can	 be	
active	simultaneously.	

• The	 namespace	 does	 not	 get	 polluted	
as	much.	In	many	cases,	a	pointer	to	an	
item	may	exist,	but	there	is	no	need	for	
a	 global	 or	 file	 static	 to	 exist	 for	 the	
item	 itself.	 Creating	 the	 global	 or	 file	
static	 allows	 access	 to	 the	 item	 from	
inappropriate	parts	of	the	code.	

• It	 is	 easy	 to	 transition	 to	 using	 a	 free()	
function	later.	

	
#define	SALLOC_BUFFER_SIZE	90000	
	
static	 unsigned	 char	
GS_sallocBuffer[SALLOC_BUFFER_SIZE];	
static	Boolean	FS_enabled	=	TRUE;	
int	GS_sallocFree	=	0;	
	
void	*salloc(int	size)	



How	to	Allocate	Dynamic	Memory	Safely	|	Niall	Murphy	

6	
	
www.barrgroup.com		|		Copyright	Barr	Group.		All	rights	reserved.	

{	
			void	*nextBlock;	
			assert(FS_enabled);	
			if((GS_sallocFree	 +	 size)	 >	
SALLOC_BUFFER_SIZE)	
			{	
						assert(FALSE);	
			}	
			nextBlock	=	&GS_sallocBuffer[GS_sallocFree];	
			GS_sallocFree	+=	size;	
			return	nextBlock;	
}	
	
void	sallocDisable(void)	
{	
			FS_enabled	=	FALSE;	
}	
	
Listing	1.	Simple	allocator	code	
	
Listing	 1	 contains	 the	 simple	 allocator	 code.	
One	 thing	 that	 might	 need	 to	 be	 added	 for	 a	
multitasking	 system	 is	 a	 locking	mechanism	 to	
prevent	simultaneous	access	 from	a	number	of	
tasks.	 This	 allocator	 also	 does	 not	 handle	
memory	alignment	issues	that	you	may	need	to	
address,	 depending	 on	 the	 alignment	
restrictions	 of	 your	 platform.	 While	 this	
approach	is	memory-safe	in	comparison	to	heap	
usage,	it	consumes	far	more	RAM	than	a	design	
that	 also	uses	 free().	However,	 that	 amount	of	
RAM	can	be	determined	by	a	 single	 run	of	 the	
system,	 and	 will	 not	 vary	 after	 the	
sallocDisable()	 function	 has	 been	 called	 at	 the	
end	of	the	start-up	sequence.	
	
Memory Pools 
	
We	 now	 return	 to	 schemes	 that	 allow	 the	
application	to	free	memory.	Pools,	or	partitions,	
of	 fixed-size	 memory	 blocks	 can	 be	 used	 to	
completely	 eliminate	 the	 potential	 for	
fragmentation.	 They	 are	 a	 compromise	
between	static	allocation	and	a	general	purpose	
heap,	 since	 this	 heap	 can	 be	 tuned	 at	 design	
time	 for	 the	 size	 of	 the	 requests	 that	 will	 be	
made.	While	 the	 standard	 implementations	 of	

malloc()	and	free()	have	to	be	general	purpose,	
many	 embedded	 systems	 consist	 of	 a	 single	
program,	and	your	heap	can	be	tuned	so	that	it	
works	 brilliantly	 for	 this	 one	 program	 even	
though	it	might	fail	miserably	for	others.	
	

	
	

Figure	5.	Using	the	appropriate	pool	
	
Each	 pool	 contains	 an	 array	 of	 blocks.	 Unused	
blocks	can	be	linked	together	in	a	list.	The	pools	
themselves	 are	 declared	 as	 arrays.	 This	
mechanism	avoids	the	overhead	of	a	header	for	
each	 block,	 since	 size	 information	 is	 fixed	 for	
each	 pool.	 Figure	 5	 shows	 the	 way	 in	 which	
requests	are	directed	to	the	pool	which	is	equal	
to	 the	 request,	 or	 the	 next	 larger	 block,	 if	 no	
exact	 match	 is	 available.	 This	 system	 must	 be	
tuned	 by	 deciding	 which	 size	 blocks	 to	 make	
available	 and	 how	 many	 blocks	 to	 provide	 in	
each	 pool.	 Defining	 pools	 at	 sizes	 which	 are	
powers	of	two	(that	is,	2,	4,	8,	16,	32,	64,	etc.)	is	
a	 good	 starting	 point	 to	 use	 if	 size	
measurements	 have	 not	 yet	 been	 taken	 for	
your	application.	
	
One	of	the	major	motivations	for	using	pools	to	
implement	 a	 heap	 is	 that	 a	 careful	
implementation	can	have	fixed	execution	times	
for	 allocations	 and	 for	 freeing	 of	 blocks.	More	
general	 heap	 implementations	 always	 involve	
iterating	through	lists	which	can	vary	in	size.	
	
By	 monitoring	 the	 size	 of	 each	 pool,	 and	
confirming	 that	 the	 number	 of	 blocks	 in	 use	
ceases	to	grow	after	extended	use,	the	designer	
can	 be	 confident	 that	 leaks	 have	 been	
eliminated.	 While	 it	 is	 wise	 to	 size	 the	 pools	
larger	 than	 the	 worst	 case	 seen	 in	 test,	
designers	 should	 be	 aware	 that	 allowing	 too	
much	"padding"	leads	to	wasted	memory.	
	



How	to	Allocate	Dynamic	Memory	Safely	|	Niall	Murphy	

7	
	
www.barrgroup.com		|		Copyright	Barr	Group.		All	rights	reserved.	

Some	implementations	of	malloc()	use	pools	for	
small	 requests	 and	a	 general	 purpose	heap	 for	
large	requests.	3	

	
RTOS Memory Partitions 
	
Many	 RTOSes	 provide	 a	 memory	 pool	
mechanism,	 usually	 called	 partitions.	 Partitions	
are	 useful	 for	 implementing	 the	 pool-based	
heap	 described	 above.	 If	 you	 use	 a	 number	 of	
partitions	 to	 implement	 your	 heap,	 then	 avoid	
using	the	RTOS	calls	directly.	You	may	have	calls	
such	as	those	in	Listing	2.	
	
block1Ptr	 =	
partitionGetBlock(partitionOfBlocksSized1000);	
block2Ptr	 =	
partitionGetBlock(partitionOfBlocksSized200);	
	
partitionFreeBlock(block1Ptr,	
partitionOfBlocksSized1000);	
partitionFreeBlock(block2Ptr,	
partitionOfBlocksSized200);	
	
Listing	 2.	 The	 wrong	 way	 to	 allocate	 from	
partitions	
	
This	 format	 is	 typical	 of	many	 RTOSes.	 Clearly,	
the	 onus	 is	 on	 the	 application	 programmer	 to	
be	 certain	 that	 a	 block	 is	 returned	 to	 the	
partition	 from	 which	 it	 was	 allocated.	 When	
implementing	 your	 pools,	 hide	 the	 calls	 to	 the	
partition	 code.	 Pass	 the	 size	 required	 to	 the	
allocation	function	and	allow	it	to	decide	on	the	
best	 partition	 to	 use.	 Only	 pass	 the	 pointer	 to	
the	 block	 to	 the	 free()	 function.	 It	 should	 be	
able	to	derive	the	partition	from	the	address	of	
the	 block.	 So	 the	 code	 snippet	 above	 will	
change	 to	 something	much	more	maintainable	
like:	
	
block1Ptr	=	myAlloc(1000);	
block2Ptr	=	myAlloc(200);	
	
myFree(block1Ptr);	
myFree(block2Ptr);	

Listing	 3.	 A	 better	 way	 to	 allocate	 from	
partitions	
	
Multitasking Memory Management 
	
While	each	task	must	have	its	own	stack,	it	may	
or	 may	 not	 have	 its	 own	 heap,	 regardless	 of	
whether	 the	 heap	 is	 based	 on	 the	 static	
allocation	 scheme,	pools,	 or	 a	 general	 purpose	
allocation	scheme.	Having	more	than	one	heap	
means	 that	 you	 have	 to	 tune	 the	 size	 of	 a	
number	 of	 heaps,	 which	 is	 a	 disadvantage.	
However	 one	 heap	 for	 many	 tasks	 must	 be	
reentrant,	 which	 means	 adding	 locks	 that	 will	
slow	down	each	allocation	and	deallocation.	
	
It	 may	 be	 necessary	 to	 allow	 one	 task	 to	
allocate	a	piece	of	memory	which	may	be	freed	
by	another	task.	This	is	useful	for	passing	inter-
task	 messages.	 When	 memory	 is	 passed	
between	 tasks	 in	 this	way,	make	 sure	 that	 it	 is	
always	 well-defined	 who	 owns	 the	memory	 at	
each	 point.	 It	 is	 obviously	 important	 that	 two	
tasks	do	not	both	believe	that	they	own	a	piece	
of	memory	 simultaneously.	 If	 this	happened,	 it	
could	 lead	 to	 two	 calls	 to	 free	 the	 same	
memory	block.	
	
Memory Management Libraries 
	
Libraries,	 whether	 written	 in-house	 or	
purchased	 from	 a	 third	 party,	 can	 cause	many	
difficulties	in	memory	management.	The	author	
of	 the	 library	 does	 not	 have	 full	 knowledge	 of	
how	 the	 library	 is	 going	 to	 be	 used.	 A	 library	
may	 allow	 the	 application	 code	 to	 create	 an	
object,	 or	 allocate	 memory	 in	 some	 way,	 but	
the	 library	 may	 not	 be	 able	 to	 free	 that	 item	
because	 the	 library	 does	 not	 know	 when	 the	
application	has	finished	with	it.	
	
Consider	a	library	that	concatenates	two	strings	
and	 returns	 the	 result	 in	 a	 newly	 allocated	
block.	 The	 library	 can't	 tidy	 up	 the	 string	 later	
because	 the	 library	 doesn't	 know	 when	 the	
application	 has	 finished	with	 it.	One	 possibility	
is	 that	 the	 library	 has	 a	 destroyString()	 routine	



How	to	Allocate	Dynamic	Memory	Safely	|	Niall	Murphy	

8	
	
www.barrgroup.com		|		Copyright	Barr	Group.		All	rights	reserved.	

that	 the	 application	 calls	 when	 it	 has	 finished	
with	 the	 item.	 This	 has	 the	 disadvantage	 that	
the	onus	 is	 on	 the	application	 to	 remember	 to	
call	 this	 function.	Another	approach	 is	 that	 the	
library	 always	 uses	 a	 static	 space	 so	 that	 the	
string	 returned	 is	 valid	until	 the	next	 time	 that	
function	 is	called,	at	which	time	that	space	will	
be	overwritten	with	 the	next	 result.	 This	 latter	
idea	is	not	suitable	for	reentrant	code,	which	is	
so	essential	to	many	embedded	systems.	
	
Many	 libraries,	 especially	 object-oriented	
libraries,	will	allocate	storage	at	some	time	that	
the	 application	will	 have	 to	 free.	 In	 such	 cases	
the	 rules	 must	 be	 very	 explicit	 and	 clear,	 and	
the	author	of	the	library	must	ensure	that	these	
rules	 are	 communicated	 to	 the	 application	
writer.	Some	 libraries	will	allow	the	application	
to	 specify	 which	 malloc()	 and	 free()	 functions	
should	 be	 used	 for	 its	 heap	management.	 This	
allows	 the	 application	 to	 manage	 its	 own	
memory	separately	 from	the	 libraries.	By	using	
debug	 versions	 of	 malloc()	 and	 free(),	 the	
designer	 can	 distinguish	 between	 a	 leak	 in	 the	
application	 and	 one	 contained	 within	 the	
library.	
 
	

Final Decisions 
	
This	 overview	 of	memory	management	 should	
have	 given	 the	 reader	 some	 ideas	 about	 what	
approach	 is	 right	 for	 their	 project.	 The	 final	
design	decisions	will	be	based	on	a	combination	
of	 how	much	 RAM	 is	 available,	 the	 complexity	
of	 the	 application,	 and	 whether	 third-party	
software	is	involved.	
	
Endnotes 
	
1.	Johnstone,	Mark	S.,	and	Paul	R.	Wilson.	"The	
Memory	 Fragmentation	 Problem:	 Solved?".	
International	 Symposium	 on	 Memory	
Management,	 Vancouver,	 British	 Columbia,	
Canada,	October	1998.	Available	at	CiteSeerX	@	
Penn	State	[back]	
	
2.	Ibid.	[back]	
	
3.	 Lethaby,	 Nick	 and	 Ken	 Black.	 "Memory	
Management	 Strategies	 for	 C++".	 Embedded	
Systems	Programming,	July	1993,	p.	28.	[back]	
	
	
	
Related	webinars	and	topics	can	be	found	at:	
https://citeseer.ist.psu.edu/myciteseer/login		

	
	
	


